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Abstract

Background: QSAR is among the most extensively used computational methodology for analogue-based design.
The application of various descriptor classes like quantum chemical, molecular mechanics, conceptual density
functional theory (DFT)- and docking-based descriptors for predicting anti-cancer activity is well known. Although
in vitro assay for anti-cancer activity is available against many different cell lines, most of the computational studies
are carried out targeting insufficient number of cell lines. Hence, statistically robust and extensive QSAR studies
against 29 different cancer cell lines and its comparative account, has been carried out.

Results: The predictive models were built for 266 compounds with experimental data against 29 different cancer
cell lines, employing independent and least number of descriptors. Robust statistical analysis shows a high
correlation, cross-validation coefficient values, and provides a range of QSAR equations. Comparative performance
of each class of descriptors was carried out and the effect of number of descriptors (1-10) on statistical parameters
was tested. Charge-based descriptors were found in 20 out of 39 models (approx. 50%), valency-based descriptor
in 14 (approx. 36%) and bond order-based descriptor in 11 (approx. 28%) in comparison to other descriptors. The
use of conceptual DFT descriptors does not improve the statistical quality of the models in most cases.

Conclusion: Analysis is done with various models where the number of descriptors is increased from 1 to 10; it is
interesting to note that in most cases 3 descriptor-based models are adequate. The study reveals that quantum
chemical descriptors are the most important class of descriptors in modelling these series of compounds followed
by electrostatic, constitutional, geometrical, topological and conceptual DFT descriptors. Cell lines in
nasopharyngeal (2) cancer average R2 = 0.90 followed by cell lines in melanoma cancer (4) with average R2 = 0.81
gave the best statistical values.

Keywords: Analogue-based design, Anti-cancer cell lines, Anti-cancer drugs, Quantum chemical descriptors, QSAR,
Docking

Background
Cancer has been seriously threatening the health and life
of humans for a long period and has become the leading
disease-related cause of deaths of human population [1].
Radiation therapy and surgery as a means of treatment
are only successful when the cancer is found at early-
localized stage. However, chemotherapy in contrast is
the mainstay in treatment of malignancies because of its
ability to cure widespread or metastatic cancers. Natural

products are the chemical agents that have been the
major source of anti-cancer drugs. According to a
review on new chemical entities, approximately 74% of
anti-cancer drugs were either natural products or nat-
ural product-related synthetic compounds or their
mimetics [2]. Computational methodologies have
emerged as an indispensible tool for any drug discovery
program, playing key role from hit identification to lead
optimization. The QSPR/QSAR is among the most prac-
tical tool used in analogue/ligand-based drug design and
has been extensively reviewed for prediction of various
properties like ADME [3], toxicity [4,5], carcinogenicity
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[6], retention time [7] stability [8] and other physico-
chemical properties apart from the biological activity
[9-12]. This theoretical method follows the axiom that
the variance in the activities or physicochemical proper-
ties of chemical compounds is determined by the var-
iance in their molecular structures [13-15].
Computational methods aids in not only the design

and interpretation of hypothesis-driven experiments in
the field of cancer research but also in the rapid genera-
tion of new hypotheses. The QSAR has widely been
applied for the activity prediction of diverse series of
biological and/or chemical compounds including anti-
cancer drugs [16-21]. A number of quantum chemical
descriptors (such as charge, molecular orbital, dipole
moment, etc.) and molecular property descriptors (such
as steric, hydrophobic coefficient, etc.) have been suc-
cessfully applied to establish 2D QSAR models for pre-
dicting activities of compounds [22-24]. Density
functional theory (DFT)-based descriptors have found
immense usefulness in the prediction of reactivity of
atoms and molecules, and its application in the develop-
ment of QSAR has been recently reviewed [25-30].
QSAR has been instrumental in the development of var-
ious popular drugs, and it has been discussed in detail
earlier [31].
For a cancer type, there are a number of cell lines

available, on which in vitro evaluation of biological
activity can be performed, but the results of this evalua-
tion varies based on the cell line employed for assay.
Therefore, it becomes difficult for computational che-
mist to choose experimental data from a pool of avail-
able biological activity for a single scaffold type, so as to
proceed for analogue-based design. Although in vitro
assay for anti-cancer activity is available against many
different cell lines, most of the computational studies
are carried out targeting any one particular cell line,
which may not be a good approach to rely upon. The
study considering all the available experimental data to
build predictive models, will guide medicinal chemist to
more reliably design new and potent compounds. Also,
analyzing the obtained descriptors for models against all
the cell lines, may suggest the importance of a particular
class of descriptor in modelling anti-cancer activity
against a cancer type. Such statistically robust and
extensive QSAR studies against many different cancer
cell lines have not been reported yet. Hence, we per-
formed comprehensive QSAR modelling studies on 266
anti-cancer compounds against 29 different cancer cell
lines. Descriptor analysis of all the QSAR models was
performed to derive commonality among various cell
lines belonging to a cancer type. The experimental data
considered in the study was from in vitro cell line-based
assays, and it is difficult to get reliable target-based
information from such studies, unless meticulously

validated. Since the aim of the present study was to
evaluate the potentials of simple 2D-based descriptors in
anti-cancer compound modelling, the biological target-
related aspects were not considered. This study provides
one of the most comprehensive accounts of the struc-
ture-activity relationship of a large number of molecules
against 29 different cancer cell lines. Besides being sta-
tistically significant, the aim of this study is to assess the
role and relevance of computationally demanding con-
ceptual-DFT descriptors compared with the conven-
tional descriptors. The strengths and limitations of
QSAR models on treating a complex area such as the
development of anti-cancer compounds are important
to notice, and the present study shows a systematic way
of developing and applying QSAR equations effectively.
Table 1 shows the name of scaffolds considered, differ-
ent cell lines [32-41], number of molecules correspond-
ing to cell lines and the target of action or the
molecular mechanism of scaffolds.

Results and discussion
Two different schemes were opted to develop statisti-
cally significant QSAR models. In the first scheme, 10
QSAR models were developed for the 10 scaffolds used
in this study (i.e. scaffold-based QSAR models), whereas
in the second scheme 29 different QSAR models were
developed based on the availability of IC50 values against
29 cancer cell lines by combining all the scaffolds (i.e.
cell lines-based QSAR models). The parent structure of
all the scaffolds with a number of compounds and name
of cell lines are represented in Scheme 1.
It is vitally necessary to avoid the oversimplification of

the QSAR modelling process and employ statistically
robust approaches for the model development. The
selection of the best model was based on the values of
correlation coefficient obtained from the correlation of
approximately 300 descriptors (constitutional, geometri-
cal, topological, electrostatic and quantum chemical,
etc.) in different combinations. In one hand, the unique-
ness of a compound and its total chemical information
cannot be described by very few descriptors while on
the other hand large number of descriptors will create
confusions and reduce the statistical robustness and pre-
dictive ability of the model. The effect of a number of
descriptors on the correlation coefficient values for all
the models were tested on training set by correlating 1-
10 descriptors separately and presented in Figure 1a (for
cell lines-based models) and b (for scaffold-based mod-
els). We observed that in various models, three descrip-
tors are sufficient for getting a good correlation and
using more than three descriptors make only small
effect on the statistical quality of the models in most
cases. Although more than six descriptor-based models
may provide high correlation and cross-validation
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Table 1 Details of scaffolds considered in the study and the cell lines against which their anticancer activity was
reported along with the number of molecules in each cell lines and its molecular target/mechanism of action if
studied

No. Scaffold name Cell lines Cancer type # of comp. Comments Ref.

S1 Naphthalimides LoVo Colon 23 DNA intercalators [31]

A549 Lung 27

Hs468 Glioblastoma 23

U373-MG Glioblastoma 29

HCT-15 Colon 25

MCF-7 Breast 20

S2 Aryl thiazolyl benzamide MB-231 Breast 27 Nek2 mitotic pathway [32]

MB-468 Breast 25

K562 Blood 25

S3 Procaspase activators U937 Lymphoma 19 Enhance procaspase-3 activity [33]

S4 Tylophorine analogues KB Nasopharyngeal 21 NF-kB signalling pathway [34]

A549 Lung 21

DU-145 Prostate 21

S5 Parthenin analogues HL-60 Blood 37 TopoisomeraseII inhibition [35]

HeLa Cervical 37

S6 Arylthiazolidine-4-acid amides A375 Melanoma 33 - [36]

B16F1 Melanoma 33

DU-145 Prostate 32

LNCaP Prostate 35

PC-3 Prostate 31

PPC-1 Prostate 33

WM-164 Melanoma 32

Fibroblast Fibroblast 27

RH7777 Prostate 32

S7 Hydroxyl benzofuranones LNCaP Prostate 22 Selective inhibitor of the mammalian target of rapamycin [37]

S8 Arylthiazole-4-acid amides B16F1 Melenoma 20 Tubulin polymerization inhibition [38]

A375 Melanoma 20

DU-145 Prostate 16

PC-3 Prostate 17

LNCaP Prostate 17

PPC-1 Prostate 18

S9 Estradiol 3,17-O,O-bis-sulfamates DU-145 Prostate 29 Disruption of the tubulin-microtubule equilibrium [39]

MB-231 Breast 22

S10 Aromathecins SF-539 CNS 29 Inhibitors of human topoisomerase I [40]

HOP-62 Lung 28

HCT-116 Colon 28

UACC-62 Melanoma 27

SN12C Renal 26

MCF-7 Breast 29

DU-145 Prostate 23
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coefficient values, however, this may be false and thus
may not be very useful for the further prediction of IC50

values. Before the division of training and test set of
compounds three, four and five, descriptor-based mod-
els were selected. While comparing the statistical perfor-
mance of the selected models, three descriptor-based
models were found to be optimum as they provide very
acceptable correlation in most cases.
All the models were divided into training and test set

by randomly selecting around 20% of the compounds in
the test set. Two independent test sets were constructed
to rule out chance correlation (statistical data for
the second test set is reported in Additional file 1
Table S83). Both the test sets showed the similar statisti-
cal performance indicating that the developed models
are adequate. Final QSAR models were generated within
the training set, and they were used to predict the activ-
ity of test set of compounds. The lower average residual
obtained in both the training and test set of compounds
in all the models indicate that the developed models are
valuable and have capability to establish the relationship

between the structure and activity for various anti-can-
cer scaffolds used in this study.
In order to assess and compare the predictive power

and the stability of the QSAR models, several statistical
and other parameters are reported and widely applied
like R2, Rcv

2, s2, F, and AE (for details about these para-
meters, see footnote to Table 2). Table 2 contains the
regression summary for cell lines-based QSAR models
along with regression equation, name of the cell lines
and types of cancer. Most of the cell lines-based QSAR
models where the activity range is broad (M1, M2, M4,
M5, M6, M8, M9, M11, M12 and M20) show higher
statistical quality (R2 ~ 0.80, Rcv

2 ~ 0.75) and seems
valuable for the current class of compounds. The statis-
tical quality of few other cell line-based models (M10,
M15, M19 and M21) is also reasonable (R2 ~ 0.75, Rcv

2

~ 0.70), and these models can be used for the predic-
tion. However, the statistical qualities of M17, M23 and
M26 models, which are lower (R2 ~ 0.60, Rcv

2 ~ 0.50),
show that extra care is required before utilizing these
models for the prediction. However, M29 cannot be

Scheme 1 266 compounds which have IC50 values represented into different scaffolds (S1-S10), the number of compounds in each
scaffold in parenthesis and different cell lines against which the cytotoxicity values were reported (please see Tables S1-10 in
Additional file 1 for structure of all the compounds with their in vitro IC50 values against various cell lines).
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used for the prediction because of the insignificant sta-
tistical results obtained for this model (R2 = 0.46, Rcv

2 =
0.43). The reason for poor result in M29 is probably
due to involvement of 118 compounds and 5 different
scaffolds in this model. The increase in the number of

descriptors for M29 is not much improving the quality
of the model (with 10 descriptors R2 ~ 0.7) and indi-
cates that the currently used descriptors are not good
enough for developing the structure-activity relationship
for this model, and one needs to try or develop

a

 

b  

Figure 1 Effect of number of descriptors on the correlation coefficient of (a) cell line-based QSAR models, (b) scaffold-based QSAR models.
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Table 2 Cell line with type of cancer in parenthesis, scaffolds involved, regression summary and number of
compounds in various cell lines based QSAR models

No Cell line
(Type)

Scf Regression equation R2 Rcv
2 AE O s2 F # Comp.

TR TS PD

M1 A375
(melanoma)

S6, S8 = 20.6264* MiVH -6.19186* ZXS/ZXR -9719.75*MiNRC
-10.9946

0.79 0.76 0.40 1 0.308 43.24 38 12 19

M2 B16-F1
(melanoma)

S6, S8 = -91.8353*MaPCH-4.3472* ZXS/ZXR-96.017*Ma1ERN
+10.0303

0.83 0.80 0.36 1 0.255 55.71 38 12 19

M4 KB
(nasopharyngeal)

S4 = 769.472* HC-2/Tz +9193.37* Mi1ERN +68.531* MiNACH
-7.67576

0.80 0.71 0.24 0 0.065 40.02 17 4 0

M5 WM-164
(melanoma)

S6 P = 0.172982*PS-3AZ-0.968448* KHI3-1205.47* MiNRN
+7.6019

0.81 0.77 0.16 1 0.062 33.70 24 6 7

M6 PC-3
(prostate)

S6, S8 = -3.14901* ZXS/ZXR -95.5552* MaPCH -2.37816*FS-2Pz+
9.10613

0.83 0.79 0.31 0 0.136 77.55 29 12 23

M8 UACC-62
(melanoma)

S10 = -256.732* MaPCN +13.6563 *MaPC+6.61641 *MaVO-
34.0055

0.81 0.74 0.30 1 0.094 51.96 21 5 6

M9 SF-539
(CNS)

S10 = 0.000240276*GIAP+ 0.113696*TPCCMD
+13.1633*MaBOO-20.9902

0.81 0.75 0.28 0 0.120 37.46 21 6 3

M10 LNCaP
(prostate)

S6, S7, S8 = -0.0396034* ZXS +0.412216* SIC0-24.4713* RNN
+0.80884

0.75 0.74 0.46 1 0.370 67.18 58 15 24

M11 PPC-1
(prostate)

S6, S8 = 0.00211384* PS-1Z-17.6992* RPCGZ -11.5927* MaNACH
+8.51731

0.80 0.77 0.27 1 0.150 48.02 37 12 20

M12 HCT-116
(colon)

S10 = -7.48415* ZXS/ZXR+ 0.157414 *TPCCMD-0.0635789*
RNCSQ+ 7.09755

0.86 0.77 0.19 1 0.157 17.06 24 9 5

M15 MB-231
(breast)

S2, S9 = -0.031465*YZS+ 5.30324* FBCSq +1.16981* MaPBO
+1.40089

0.70 0.66 0.35 1 0.191 25.79 37 11 21

M17 A549
(lung)

S1, S4 = -0.505821* RPCSZ -3.59234* MiVO +2.58951* MiBOO +
9.37614

0.64 0.56 0.32 1 0.135 30.22 38 9 12

M19 HOP-62
(lung)

S10 = -12.0428* ZXS/ZXR -4.44967* RPCSQ -0.819861* NF
+12.2371

0.70 0.66 0.38 0 0.278 14.69 23 5 2

M20 KBvin
(nasopharyngeal)

S4 = -5.01349**HC-1/T -5.01844* PP/SD -0.768924* MaNACC
+3.76504

0.99 0.97 0.02 0 0.047 31.28 17 4 0

M21 MCF-7
(breast)

S1, S10 = -5.62149*ZXS/ZXR-64.0123* MiNRO-100.36*Mi1ERC
+5.76988

0.72 0.65 0.32 1 0.138 31.51 39 9 36

M23 SN12C
(renal)

S10 = -0.339628*NN-8.49682* XYS/XYR-1.57052* MiVC+
14.5423

0.60 0.51 0.25 1 0.048 17.50 17 8 5

M26 OVCR-3
(ovarian)

S1, S10 = -0.00524177* MSA -0.300618*THCMD +2.31159* MaVO
-0.441172

0.63 0.51 0.25 2 0.072 25.39 18 8 18

M29 DU 145
(prostate)

S4, S6, S8, S9,
S10

= 15.0725* RNO +0.00985941* HS-1Z-25.5879* H-HC-2/ST
+2.19779

0.46 0.43 0.44 1 0.391 28.73 99 18 36

M3 HeLa
(cervical)

S2, S5 = 0.298986*NN+0.00213416*W-1wP+0.849867*MiVC-
2.24538

0.83 0.76 0.13 1 0.043 71.93 44 16 11

M7 U937
(lymphoma)

S3 = -22.0891* MiBOH +8.67391* MiVN -52.0125* H-HD-2/T
-7.6190

0.84 0.75 0.14 0 0.029 32.41 15 4 8

M13 Hs-638
(glioblas toma)

S1 = 9.68671* MaVC -1671.96* A1ERC -2.78721*MiVO
-30.7528

0.83 0.70 0.08 1 0.009 29.13 17 5 16

M14 HCT-15
(colon)

S1 = 2.33664* AVN -2.02577* MiNACN +9.95155* MaVC
-46.34

0.86 0.77 0.08 0 0.021 14.25 17 8 14

M16 HL-60
(blood)

S5 = -7.57298*RNH-2.67981*RNO+ 3.66509*MaVO-2.2655 0.65 0.61 0.17 0 0.053 18.98 29 8 0

M18 MB468
(breast)

S2 = -0.184603* RPCSZ +0.0249929* RNCSZ-2.74917*MiBOH
+4.0713

0.64 0.50 0.16 0 0.044 11.23 19 6 10

M22 LoVo
(colon)

S1 = 106.594* MaERC +5.20066* MaBOO-47.3247*MaVH
+37.9454

0.60 0.53 0.16 0 0.038 13.92 25 6 8

M24 K562
(blood)

S2 = 0.034093* H-HC-1Q -0.273258* RPCSZ -24886* MiERC
+1.64689

0.62 0.54 0.20 0 0.061 8.70 19 6 10

M25 U373-MG
(glioblas toma)

S1 = -27.0375* ANRN -0.297945* H-1E -0.195554*MaBON 0.55 0.46 0.17 0 0.043 8.18 23 6 10

Bohari et al. Organic and Medicinal Chemistry Letters 2011, 1:3
http://www.orgmedchemlett.com/content/1/1/3

Page 6 of 12



additional descriptors. However, the involvement of sin-
gle scaffolds in this model provides a good statistical
quality (DU145/S10 in Table 3). The models (M3, M7,
M13, M14, M16, M18, M22, M24, M25, M27 and M28),
for which the activity range was narrow were moved to
the end of Table 2 and will not be very reliable for pre-
dictions. Some of these models (M3, M7, M13, M14
and M27) show higher correlation values (R2 ~ 0.80,
Rcv

2 ~ 0.75) while other six models show moderate cor-
relation values (R2 ~ 0.65, Rcv

2 ~ 0.60) although the resi-
duals are lower in all the 11 models as per expectations.
The statistical details and descriptor types for cell line-
based QSAR models are depicted in Figure 2a.
Regression summary for scaffold-based QSAR models

along with regression equation, name of the cell lines
and types of cancer is given in Table 3. We observed a
good statistical quality with higher regression coefficient

values in all the scaffold-based QSAR models probably
because of the involvement of lesser number of com-
pounds and only one scaffold in the development of
these models. The range of activity of compounds in
four models (S1, S2, S5 and S6) is narrow, so these
models were moved to the end of Table 3 and these
models will not be very reliable. The models with nar-
row activity range compounds show lower regression
coefficient values compared with the ones with broad
activity range compounds. All the scaffold-based models
with broad activity range compounds seem reasonable
and can be used for the prediction. The statistical details
and descriptor types for scaffold-based QSAR models
are depicted in Figure 2b.
The observed and predicted activity with residuals and

descriptor values for all the developed models are pre-
sented in Additional file 1 (Tables S12 to S46). Outliers

Table 3 Cell line with type of cancer in parenthesis, scaffolds involved, regression summary and number of
compounds in various scaffolds based QSAR models developed for the prediction of IC50 values

No Cell line
(Type)

Regression equation R2 RCV
2 AE O s2 F # Comp.

TR TE PD

S3 U937
(lymphoma)

= -22.0891* MiBOH +8.67391* MiVN -52.0125* H-HD-2/T -7.61902 0.84 0.75 0.14 0 0.029 32.41 15 4 8

S4 KBvin
(nasopharyngeal)

= -5.01349**HC-1/T -5.01844* PP/SD -0.768924* MaNACC +3.76504 0.99 0.98 0.02 0 0.047 31.28 17 4 0

S7 LNCaP
(prostate)

= -18.4821*RNC-0.0467594*PS-3Az-22.7663*HS-1/T+15.7067 0.84 0.75 0.39 1 0.175 51.03 17 4 5

S8 A375
(melanoma)

= -126.706*Mi1ERS-48.08*RNN -49.070* MaERN +5.9514 0.91 0.88 0.24 0 0.164 48.73 16 4 13

S9 MB231
(breast)

= 32.1529* ABC -64.8239* H-HD-2/T -0.546856* HE -31.4458 0.71 0.58 0.33 1 0.099 30.56 17 4 13

S10 DU-145
(prostate)

= 10.2264*MaBOC+0.17954*TPCCMD-1904.46*MiERO-14.72 0.86 0.74 0.23 0 0.091 36.82 16 5 7

S1 Hs-638
(glioblastoma)

= 9.68671* MaVC -1671.96* A1ERC -2.78721*MiVO -30.7528 0.83 0.70 0.08 1 0.009 29.13 17 5 16

S2 K562
(blood)

= 0.039572* H-HC-1Q-0.264148* RPCSZ-28043.6*MiERC+1.5088 0.62 0.46 0.19 0 0.061 8.70 19 6 10

S5 HeLa
(cervical)

= 0.306112* ACI2+ 5.47295*MiPCO +0.533647* RNAB +1.85607 0.57 0.51 0.07 1 0.006 15.88 27 9 0

S6 B16-F1
(melanoma)

= -0.236646*KHI3-9.21013*MV/X-128.278*MaPCH+13.064 0.65 0.34 0.28 0 0.096 22.23 25 6 6

Please refer to the footnote of Table 2 for definition of the statistical parameters as well as other abbreviations.

Table 2 Cell line with type of cancer in parenthesis, scaffolds involved, regression summary and number of com-
pounds in various cell lines based QSAR models (Continued)

M27 Fibroblast
(fibroblast)

S6 = 20.3816* MiVN +0.783874* L1E-70.268548*THCMD-
59.2997

0.79 0.72 0.12 0 0.046 22.98 20 5 7

M28 RH7777
(prostate)

S6 = -43.2403*MI-A-1.24807*MaBOC-69.6817*AERN+4.96796 0.58 0.38 0.16 0 0.057 3.45 23 6 7

R2 is the square of the correlation coefficient and represents the statistical significance of the model. Rcv2 is the cross-validated R2, a measure of the quality of
the QSAR model. O is the number of outlier for the model. s2 is the standard deviation. F is the Fischer statistics, the ratio between explained and unexplained
variance for a given number of degrees of freedom, thereby indicating a factual correlation or the significance level for QSAR models. AE is the average of
absolute difference between experimental and predicted IC50 values. TR is number of molecules in training set, TE is test set molecules, PD is number of
molecules for which activity was not reported, and the QSAR model predicted it.
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are those compounds which are unable to fit in the
developed QSAR models. Although most of these QSAR
models do not have any outlier, however, in some cases
maximum of one outlier is present because of its higher
deviation between the observed and predicted activities.
The occurrence of outliers is not only due to the possi-
bility that the compounds may act by different mechan-
isms or interact with the receptor in different binding
modes but also due to the intrinsic noise associated

with both the original data and methodological aspects
opted for the construction of models. Figure 3a,b repre-
sents the plot between the experimental and predicted
IC50 values for cell line- and scaffold-based QSAR,
respectively, (the plot for 11 cell line- and 4 scaffold-
based models, which has narrow activity range, is pre-
sented in Figure S1a,b, respectively, of the Additional
file 1). The average residual for test and training set
compounds presented in this figure clearly shows the
compounds of test set are closer to the line compared
with the compounds of training set. Rigorous validation
for the applicability of generated QSAR models was
done by dividing another independent test set. As per
our expectations, the statistical performance of the sec-
ond test set is similar to that of the first test set. The
observed and predicted activity with residuals and
descriptors values for all the developed models for the
second test set of compounds are presented in Addi-
tional file 1 (Tables S48-S82).
In the developed QSAR models, 78 descriptors (42

quantum chemical, 18 electrostatic, 8 constitutional, 7
geometrical and 3 topological) were used in different
combinations. Figure 4 depicts the details of all the 78
descriptors, its type and occurrence in the models. The
inter-correlation of the descriptors appeared in all the
developed models were taken into account, and the
descriptors were found to be reasonably orthogonal (see
Additional file 1 Table S47 for details). Frequent occur-
rence of quantum chemical descriptors was found in
general in the developed QSAR models. Charge-based
descriptors (such as Maximum partial charge for a H
atom, Minimum net atomic charge for a H atom, Rela-
tive positive charged surface area, Maximum net atomic
charge for a C atom etc.) were present in 20 of 39 mod-
els (approx. 50%) thereby sharing a major proportion of
overall descriptor space. This was followed by valency-
based descriptors (such as Minimum valency of O atom,
Minimum valency of a C atom, Average valency of a N
atom, Maximum valency of a H atom, etc.) present in
14 models (approx. 36%). This was later followed by
bond order-based descriptors (such as Minimum (>0.1)
bond order of a H atom, Maximum bond order of a N
atom, Average bond order of a C atom, Maximum PI-PI
bond order, etc.) present in 11 models (~28%). This
indicates the role of charge-based, valency-based and
bond order-based descriptors in modelling of the pre-
sent set of compounds. We have tested the conceptual
DFT descriptors on all the above models and found that
these descriptors are not important for this class of
compounds.
Cell lines considered in the current study correspond

to 14 different cancer types (Additional file 1 Table
S84). Among them, eight cancer types have experimen-
tal data with more than one cell line. Thus, comparative

a  

 

 

b  

Figure 2 Regression summary (correlation coefficient R2, cross-
validation coefficient RCV

2 and average residual AE values) for
(a) cell line-based QSAR models, (b) scaffold-based QSAR
models.
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Figure 3 Plot between experimental and predicted IC50 values with correlation coefficient, cross-validation coefficient and average
residual for training and test set of molecules separately for (a) Cell line-based QSAR, (b) scaffold-based QSAR models.
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statistical significance of various types of cancer has
been analysed (see Additional file 1 Table S84 for
details). It is interesting to note that nasopharyngeal (R2

= 0.90, Rcv
2 = 0.84), lymphoma (R2 = 0.84, Rcv

2 = 0.75),
cervical (R2 = 0.83, Rcv

2 = 0.76), melanoma (R2 = 0.81,
Rcv

2 = 0.77), CNS (R2 = 0.81, Rcv
2 = 0.75), fibroblast (R2

= 0.79, Rcv
2 = 0.72) and colon (R2 = 0.77, Rcv

2 = 0.69)
types of cancer show better statistical performance
(average R2 = 0.82 and average Rcv

2 = 0.75) compared
with other types of cancer (glioblastoma, prostate,
breast, lung, blood, ovarian and renal; average R2 = 0.65
and average Rcv

2 = 0.57).

Conclusions
Within the present study, we assessed the predictive
power of QSAR approaches to model anti-cancer com-
pounds. A total of 39 QSAR models, 10 for different
scaffolds and 29 for different cell lines, were built to
assess the predictive power of QSAR models for anti-
cancer activity. Although analysis is done with various
models where the number of descriptors is increased
from 1 to 10, it is interesting to note that in most cases
3 descriptor-based models are adequate. The study
reveals that quantum chemical descriptors are the most
important class of descriptors followed by electrostatic,
constitutional, geometrical, topological and conceptual
DFT descriptors. Charge-based descriptors prevailed
among the rest, followed by valency-based and bond
order-based descriptors. Thus, the current study high-
lights the importance of analogue-based designing
approaches in modelling anti-cancer compounds. Con-
siderably, we did not make any assumptions about the
site of interaction or mechanism of action of these com-
pounds yet were able to develop statistically robust
models for all experimentally tested compounds where

the correlation coefficient (R2) and cross-validation coef-
ficient (Rcv

2) values are higher and average residuals
(AE) are lower in most cases. Cell lines in nasopharyn-
geal (2) cancer average R2 = 0.90 followed by cell lines
in melanoma cancer (4) with average R2 = 0.81 gave the
best statistical values.

Methods
Details of the scaffold considered in the study along
with the cell lines against which experimental IC50

values is reported with number of compounds in each
cell line is given in Table 1. Two different schemes
(scaffold- and cell line-based) were followed for per-
forming QSAR studies. Scaffold-based QSAR studies
were carried out based on the availability of compounds
in various scaffolds (S1-S10) collected from ten different
studies. The cell line that provided the best regression
summary was used for making scaffold-based QSAR
models. See Tables S1-S10 in Additional file 1 for the
structure and the corresponding activity values of all the
compounds. Scheme 2 provides a schematic illustration
of workflow adopted in the manuscript for building and
validating various QSAR models. A total of 266 com-
pounds are collected along with their anti-cancer activity
against 29 cancer cell lines which belong to 10 different
chemical scaffolds (Scheme 1). All the structures were
initially optimized using semi-empirical AM1 procedure
and later subjected to energy evaluations at B3LYP/6-
31G(d) level on AM1 geometries [42]. Important
descriptors were obtained using these B3LYP calcula-
tions by using the CODESSA [43] program in conjunc-
tion with the Gaussian output files. The 300 descriptors
obtained using the CODESSA program can be divided
into different classes such as constitutional, topological,
geometrical, quantum chemical and thermodynamic. For

Figure 4 Classification of various descriptors involved in QSAR model. Numbers in parenthesis indicates the number of descriptors from
one group while numbers outside parenthesis indicates the occurrence of a particular type of descriptor in the models (see Additional file 1
Table S11 for the details of all the descriptors).
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each compound these descriptors were calculated, and
non-significant descriptors were identified by heuristic
method and eliminated. The inter-correlation of the
descriptors in all the models was tested. Then, models
where the descriptors are highly inter-correlated were
replaced and refined so that the descriptors employed in
a given model are virtually orthogonal to each other. In
order to find out the minimum number of descriptors
defining activity, we systematically developed 3, 4 and 5
descriptor-based models for all sets of compounds,
using heuristic method. It was found that three descrip-
tor-based models are fairly satisfactory. Then all the
compounds were divided into two independent tests
(approx. 20%) and training set (approx. 80%) using Pro-
ject Leader application associated with Scigress explorer
[44]. The statistical quality of the model was assessed by
various parameters like R2, R2

cv, AE, s, F, for both test
and training set. The validation of QSAR models was
done by examining the prediction of activity on test set
i.e. R2, R2

cv and AE. The effect of the number of
descriptors on the correlation coefficient was examined
on the training set of molecules by running heuristic
method at 1-10 descriptors. Two different training and
test sets were developed to rule out chance correlation.
Scheme 2 illustrates the steps taken for developing the
final QSAR models in a schematic fashion.

Additional material

Additional file 1: The additional data file available with the online
version of the article contains following information: (a) Structure of
all the compounds used in this study (Tables S1-S10); (b) Full name of all
the descriptors involved in the study (Table S11); (c) The predicted
activity and descriptors values for all the models, the first test set (Tables
S12-S46); (d) Inter-correlation analysis of the descriptors (Table S47); (e)
The predicted activity and descriptors values for all the models, the
second test set (Tables S48-S82); (f) Regression summary for cell- line-
based and scaffold-based QSAR models pertaining to the second test set
(Table S83a and S83b); (g) Comparative statistical significance of various
cancer types (Table S84); (h) Figure of plot between the experimental
and predicted IC50 values for the QSAR models where activity range was
narrow, based on cell lines and scaffold (Figure S1a,b).

Abbreviation
DFT: density functional theory.
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