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Synthesis and evaluation of antitumor activities
of novel chiral 1,2,4-triazole Schiff bases bearing
γ-butenolide moiety
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Abstract

Background: 1,2,4-Triazole derivatives have received much attention due to their versatile biological properties
including antibacterial, antifungal, anticonvulsant, antiinflammatory, anticancer, and antiproliferative properties.
1,2,4-Triazole nucleus has been incorporated into a wide variety of therapeutically interesting molecules to
transform them into better drugs. Schiff bases of 1,2,4-triazoles have also been found to possess extensive
biological activities. On the other hand, γ-substituted butenolide moiety represents a biological important entity
that is present in numerous biologically active natural products.

Results: We have described herein the synthesis of 12 hybrid 1,2,4-triazole Schiff bases bearing γ-substituted
butenolide moiety. These compounds were synthesized by utilizing the tandem asymmetric Michael addition/
elimination reaction as the key step. All the new compounds were evaluated for their in vitro anticancer activity.

Conclusions: Tandem asymmetric Michael addition/elimination approach has offered an easy access to new chiral
1,2,4-triazole compounds 7a-7l. All these chiral 1,2,4-triazole derivatives exhibited good anticancer activities towards
Hela. Of all the tested compounds, the chiral compound 7l with an IC50 of 1.8 μM was found to be the most active.
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Background
Cancer, a diverse group of diseases characterized by the
proliferation and spread of abnormal cells, is a major
worldwide problem. Therefore, the discovery and devel-
opment of new potent and selective anticancer drugs are
of high importance in modern cancer research.
1,2,4-Triazole derivatives have received much attention

due to their versatile biological properties including anti-
bacterial, antifungal, anticonvulsant, antiinflammatory,
anticancer, and antiproliferative properties [1-10]. 1,2,4-
Triazole nucleus has been incorporated into a wide
variety of therapeutically interesting molecules to trans-
form them into better drugs [11-13]. Schiff bases of
1,2,4-triazoles have also been found to possess exten-
sive biological activities [14-18]. On the other hand,
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γ-substituted butenolide moiety represents a biological
important entity that is present in numerous biologically
active natural products [19-24].
Recently, we reported on the synthesis of a series

of hybrid 1,3,4-thiadiazoles derivatives possessing γ-
substituted butenolide moiety, which exhibited good
anticancer activities against cervical cancer cells [25].
In continuation of our studies on the identification of
potential active antitumor compounds, herein we report
the synthesis and evaluation of a new series of hybrid
1,2,4-triazole Schiff bases bearing γ-substituted buteno-
lide moiety as potential anticancer agents (Figure 1). To
the best of authors’ knowledge, the synthesis and antic-
ancer activities of this types of compounds have not
been reported so far.
Results and discussion
The enantiomerically pure γ-substituted butenolides 1
were synthesized via acetalization of mucobromic acid
by employing (−)-menthol and (+)-borneol as a chiral
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Figure 1 The general structure of target compounds.
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auxiliary, respectively, and followed by resolution of the
resulting diastereomers [25-27].
The 1,2,4-triazole Schiff bases 6 were synthesized by

condensation 4-amino-5-substituted-4H-1,2,4-triazol-3-
thiols 5 with aromatic aldehydes in glacial acetic acid
(Scheme 1) [14]. The 4-amino-5-substituted-4H-1,2,4-
triazol-3-thiols 5 were prepared according to the pre-
vious procedure [28,29]. When R1 is methyl, the
compound 5a was prepared by heating a mixture of
thiocarbohydrazide with acetic acid [28]. When R1 are
aryl, a different procedure was employed as aromatic
carboxylic acids are generally solid, have high melting
points, and are difficult to react with thiocarbohydrazide
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Scheme 1 Synthesis of 1,2,4-triazole Schiff bases 6.
fully [29]. Thus, staring from aromatic carboxylic acid
esters 2, the aroyl hydrazides 3 were obtained by reac-
tion with hydrazine in EtOH. Treatment of the aroyl
hydrazides 3 with CS2 under a basic condition (KOH/
EtOH) gave the corresponding potassium aroyl dithio-
carbazates 4. Then, the resulting compounds 4 were
cyclized with hydrazine to provide the compounds 5b–d
in good yields.
The target compounds 7a–l were prepared via tandem

Michael addition–elimination reaction of γ-substituted
butenolides 1 with 5-substituted 1,2,4-triazole Schiff bases
6 under phase-transfer catalysis conditions (Scheme 2).
The structures of these new compounds 7a–l were

characterized with IR, 1H, 13 C NMR, and LC-MS spec-
tra. In addition, the molecular structure of 7a was
unambiguously confirmed through X-ray crystallography
(Figure 2).a

All newly synthesized compounds 7a–l were initially
evaluated for their in vitro anticancer activities against
cervical cancer cell lines (HeLa) using the MTT assay,
and the results were summarized in Table 1. All the
compounds 7a–l displayed good inhibition activities
on HeLa cell lines. Of all the studied compounds, the
compound 7l exhibited the best inhibitory activity with
an IC50 of 1.8 μM.
Then, the growth inhibition rates of HeLa cell lines

with compounds 7a–l at different concentrations (0.1–
20 μM) were evaluated (Table 2). After being treated
with 20 μg/mL compound 7l for 24 h, the growth inhib-
ition rate was the highest (90.0%).

Experimental
All the chemicals were used as-received without further
purification unless otherwise stated. IR spectra were
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Scheme 2 Synthesis of target compounds 7a–l.
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recorded on a FTIR-8400S spectrometer as KBr disks.
1H NMR and 13 C NMR spectra were obtained with a
Bruker Avance III 400 MHz spectrometer in chloroform-
d (CDCl3) and tetramethylsilane was used as an internal
standard. Diffraction measurement was made on a Bruker
AXS SMART 1000 CCD diffractometer with graphite-
monochromatized Mo Kα radiation (λ = 0.71073 Å). All
the melting points were determined on a WRS-1B digital
melting point apparatus and are uncorrected. Thin-layer
chromatography (TLC) was carried out on silica GF254
plates (Qingdao Haiyang Chemical Co., Ltd., China).
General procedure for the synthesis of compounds 7
To an aqueous solution of dichloromethane was sequen-
tially added the compounds 1 (1.0 mmol), potassium
carbonate (1.0 mmol), 18-crown-6 (0.1 mmol), and the
compounds 6 (1.1 mmol). The resulting mixture was
stirred at room temperature, and the reaction was moni-
tored by TLC. On completion of the reaction (10–20 h),
the mixture was exacted and the organic layer was
washed with saturated brine. Then the organic layer was
dried over anhydrous MgSO4, filtered, and concentrated
in vacuo The purification of the residue by silica gel col-
umn chromatography or crystallizations yielded the
desired compounds 7a-l in 65-89% yields (For the
characterization of compound 7a-7l, please see the
Additional file 1: Supporting Information). Compound
7 l: white solid, 76% yield, [α]D

20 = −37.2 (c = 0.5 M,
CHCl3). mp 131–132°C. IR (KBr) 3210, 1780, 1603,
1523, 1440, 1421, 1319, 1212, 1134, 993 cm-1. 1H NMR
(400 MHz, CDCl3) 10.04 (s, 1H), 8.73 (s, 1H), 7.59-
7.04 (m, 2H), 7.14-7.06 (m, 2H), 6.20 (s, 1H), 3.81 (m, 1H),
2.59 (s, 3H), 2.25-2.22 (m, 1H), 1.69-1.09 (m, 6H), 0.78-
0.74 (m, 6H), 0.53 (s, 3H). 13 C NMR (100 MHz, CDCl3)
170.4, 164.0, 160.3, 152.9, 151.0, 138.2, 136.3, 133.7, 120.6,
118.1, 115.4, 112.8, 103.1, 88.8, 49.3, 47.6, 44.7, 36.7, 27.9,
26.5, 19.5, 18.7, 13.3, 11.2. HRMS calcd. for C24H27Br
N4O4S [M]+: 546.0936, found 546.0933.
Pharmacology
Cells (1 × 104 in 100 μL) were seeded on 96-well plates
in triplicate. Following a 24-h culture at 37°C, the
medium was replaced with fresh medium at various con-
centrations (1.25, 2.5, 5, 10, 20 μg/mL) of compounds
7a–l in a final volume of 110 μL. At the same time, set
drug-free medium negative control well, and solvent con-
trol well of the same volume of dimethyl sulfoxide
(DMSO). Cells were incubated at 37°C for 24 h. Then, 20
μL of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) (2 mg/mL in a phosphate buffer solu-
tion) was added to each well, incubated for an addi-
tional 4 h, the plates were centrifuged at 1000 r/min
for 10 min, then the medium was removed. MTT
formazan precipitates were dissolved in 100 μL of
DMSO, shaken mechanically for 10 min and then read
immediately at 492 nm in a plate reader (Opsys MR,



Table 2 Growth inhibition rates of HeLa cell lines with
compounds 7a–l at different concentrations

Compounds Inhibition rates (%)

1.25 μM 2.5 μM 5 μM 10 μM 20 μM

7a 1.2 8.7 16.1 30.2 41.9

7b 26.2 30.2 53.8 65.2 85.7

7c 9.4 35.3 21.3 52.3 60.2

7d 17.9 11.0 34.8 47.7 65.5

7e 10.9 11.4 24.3 76.0 85.2

7f 10.3 27.4 56.9 73.4 85.1

7g 18.0 30.9 43.4 49.7 67.1

7h 8.3 14.3 40.7 77.5 71.7

7i 14.3 35.6 67.8 85.4 87.7

7j 24.0 32.5 54.1 67.6 81.2

7k 14.8 36.2 60.0 56.7 67.3

7l 47.5 45.4 74.1 88.6 90.0

Figure 2 ORTEP view of the crystal structure of compound 7a.
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Denex Technology, USA).

Cell inhibition rate ¼ A492 negative control wellð Þ½
� A492 dosing wellð Þ�=
A492 negative control wellð Þ 100%:

Conclusions
In summary, a new type of chiral 1,2,4-triazole Schiff
bases bearing γ-substituted butenolide moiety have been
synthesized and their in vitro anticancer activities against
have been evaluated. These chiral 1,2,4-triazole
Table 1 In vitro anticancer activities against HeLa cell
lines with compounds 7a–l (n = 3)

Compound IC50 (μM) Compound IC50 (μM)

7a 19.7 7h 7.1

7b 4.4 7i 3.7

7c 11.6 7j 4.5

7d 11.2 7k 6.2

7e 6.8 7l 1.8

7f 5.1 DDP (Cisplatin) 2.6

7g 8.2

The IC50 values represent the compound concentration (μM) required to
inhibit tumor cell proliferation by 50%.
derivatives exhibited good anticancer activities towards
HeLa. The compound 7l with an IC50 of 1.8 μM was
found to be the most active. Further studies of antican-
cer activities of these compounds are in progress in our
group.

Endnote
aThe molecular structure of the product 7a was deter-

mined by means of X-ray crystallographic studies. CCDC
829447 (7a) contains the supplementary crystallographic
data for this article. These data can be obtained free of
charge from The Cambridge Crystallographic Data
Centre via www.ccdc.cam.ac.uk/data_request/cif.

Additional file

Additional file 1: Supporting Information Available. Experimental
procedures, spectral data of new compounds.
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