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Abstract

Background: Drug metabolism and pharmacokinetic (DMPK) assessment has come to occupy a place of interest
during the early stages of drug discovery today. Computer-based methods are slowly gaining ground in this area
and are often used as initial tools to eliminate compounds likely to present uninteresting pharmacokinetic profiles
and unacceptable levels of toxicity from the list of potential drug candidates, hence cutting down the cost of the

discovery of a drug.

Results: In the present study, we present an in silico assessment of the DMPK profile of our recently published
natural products database of 1,859 unique compounds derived from 224 species of medicinal plants from the
Cameroonian forest. In this analysis, we have used 46 computed physico-chemical properties or molecular
descriptors to predict the absorption, distribution, metabolism and elimination (ADME) of the compounds. This
survey demonstrated that about 50% of the compounds within the Cameroonian medicinal plant and natural
products (CamMedNP) database are compliant, having properties which fall within the range of ADME properties
of >95% of currently known drugs, while >73% of the compounds have <2 violations. Moreover, about 72% of the
compounds within the corresponding ‘drug-like” subset showed compliance.

Conclusions: In addition to the previously verified levels of ‘drug-likeness’ and the diversity and the wide range of
measured biological activities, the compounds in the CamMedNP database show interesting DMPK profiles and,
hence, could represent an important starting point for hit/lead discovery from medicinal plants in Africa.
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Background

Natural products (NPs) play an increasingly important
role in drug discovery today [1-5], both serving as drugs
and as templates for the design of nature-inspired medi-
cines [3,6]. In fact, it has been reported that a significant
proportion of drugs that undergo clinical trials are either
naturally occurring or are derived from NPs [7]. What
characterises NPs are their richness in stereogenic centres
and coverage of segments of chemical space which are
typically not occupied by a majority of synthetic molecules
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and drugs [8,9]. In addition, they generally contain more
oxygen atoms and less aromatic atoms on average, when
compared with ‘drug-like’ molecules [8-11]. It is needless
to say that NPs sometimes fail the famous ‘drug-likeness’
test due to the often bulky nature of naturally occurring
metabolites [11].

It is also worth mentioning that designing drug-like
molecules having interesting pharmacokinetic properties
is an important paradigm in drug discovery programs
[12,13]. This entails the search for lead compounds which
can be easily orally absorbed, easily transported to their
desired site of action, not easily attacked by metabolising
enzymes so as to form toxic metabolic products before
reaching the targeted site of action and easily eliminated
from the body before accumulating in sufficient amounts

© 2013 Ntie-Kang et al, licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.


mailto:ntiekfidele@gmail.com
http://creativecommons.org/licenses/by/2.0

Ntie-Kang et al. Organic and Medicinal Chemistry Letters 2013, 3:10
http://www.orgmedchemlett.com/content/3/1/10

that may produce adverse side effects. The ensemble of
the above properties is often referred to as absorption, dis-
tribution, metabolism and elimination (ADME) properties,
or better still ADMET or ADME/T or ADMETox (ie. if
toxicity criteria are also taken into consideration).

Computer-based in silico approaches for the prediction
of ADMET profiles of drug leads at early stages of drug dis-
covery are increasingly gaining ground [14-16]. This could
be explained by the relative cost advantage added to the
time factor, when compared to standard experimental ap-
proaches for ADMET profiling [17,18]. On these grounds,
several theoretical methods for the determination of
ADMET parameters have been developed and imple-
mented in a number of currently available software for drug
discovery protocols [19-22], even though the predictions
are sometimes disappointing [23]. Such software often
make use of quantitative structure-activity relationships
[22-24] or knowledge-base methods [25-27]. The goal has
been to considerably cut down on the currently very high
cost of discovery of a drug [17]. A promising lead is often
defined as a compound which combines potency with an
admirable ADMET profile. As such, compounds with un-
favourably predicted pharmacokinetic profiles are either
completely dismissed from the list of potential drug candi-
dates (even if they prove to be highly potent) or the drug
metabolism and pharmacokinetics (DMPK) properties are
‘fine tuned’ in order to improve their chances of making it
to clinical trials [28]. This explains why the ‘graveyard’ of
very highly potent compounds which do not make it to
clinical trials keeps filling up, to the extent that the process
of drug discovery often presents the challenge of either
resorting to new leads or ‘resurrecting’ some buried leads
with the view of fine-tuning their ADMET profiles.

In a recent paper, we have presented a database of 1,859
compounds derived from the Cameroonian flora, Camer-
oonian medicinal plant and natural products (CamMedNP),
the compounds being predicted to be sufficiently orally
available and diverse to be employed in lead discovery pro-
grams [29]. Additional arguments in favour of the use of
this database are the wide range of the previously observed
biological activities of the compounds and the wide range
of ailments being treated by traditional medicine with the
help of the herbs from which the compounds have been
derived [29,30].

Numerous drugs at a late stage of pharmaceutical devel-
opment and many more lead compounds fail due to ad-
verse pharmacokinetic properties [18]. It is, therefore,
important to incorporate the prediction of the ADME
properties into the lead compound selection, by means of
molecular descriptors. A molecular descriptor is often de-
fined as a structural or physico-chemical property of a mol-
ecule or part of a molecule, for example the logarithm of
the n-octanol/water partition coefficient (log P), molar
weight (MW) and total polar surface area. A number of
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relevant molecular properties (descriptors) are often used
to help predict the pharmacokinetic behaviour of potential
drug leads. In the present study, we have carried out an in
silico assessment of the ADMET profile of the CamMedNP
database by the use of computed molecular descriptors cur-
rently implemented in a wide range of software tools as in-
dicators of the pharmacokinetic properties of a large
proportion of currently known drugs.

Methods

Data sources and generation of 3D structures

The plant sources, geographical collection sites, chemical
structures of pure compounds and their measured bio-
logical activities were retrieved from literature sources and
have been previously described [29]. The three-dimensional
(3D) structures were generated using the builder module of
MOE [31], and energy minimization was subsequently
carried out using the MMFF94 [32] until a gradient of
0.01 kcal/mol was reached.

Initial treatment of chemical structures and calculation of
ADMET-related descriptors

The 1,859 low-energy 3D chemical structures in the
CamMedNP library were saved in mol2 format and initially
treated with LigPrep [33], distributed by Schrodinger, Inc.
(New York, USA). This implementation was carried out
with the graphical user interface of the Maestro software
package (New York, USA) [34], using the OPLS force field
[35-37]. Protonation states at biologically relevant pH were
correctly assigned (group I metals in simple salts were dis-
connected, strong acids were deprotonated and strong
bases protonated, while topological duplicates and explicit
hydrogens were added). All molecular modelling was car-
ried out on a Linux workstation (San Francisco, USA) with
a 3.5 GHz Intel Core2 Duo processor (Santa Clara, USA).
A set of the ADMET-related properties (a total of 46 mo-
lecular descriptors) were calculated using the QikProp pro-
gram (New York, USA) [21] running in normal mode.
QikProp generates physically relevant descriptors and uses
them to perform ADMET predictions. An overall ADME-
compliance score, drug-likeness parameter (indicated by
#stars), was used to assess the pharmacokinetic profiles of
the compounds within the CamMedNP library. The #stars
parameter indicates the number of property descriptors
computed by QikProp, which falls outside the optimum
range of values for 95% of known drugs. The methods
implemented were developed by Jorgensen et al. [38-40].
Among the calculated descriptors are the total solvent-
accessible molecular surface, S, in A2 (probe radius 1.4
A; range for 95% of drugs is 300 to 1,000 A%); the hydro-
phobic portion of the solvent-accessible molecular surface,
Swmolhfob in A% (probe radius 1.4 A; range for 95% of drugs
is 0 to 750 A?%); the total volume of molecule enclosed by
solvent-accessible molecular surface, Vo in A (probe
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radius 1.4 A; range for 95% of drugs is 500 to 2,000 A®);
the logarithm of aqueous solubility, logS,,.; (range for 95%
of drugs is —6.0 to 0.5) [36,38]; the logarithm of predicted
binding constant to human serum albumin, logKyss (range
for 95% of drugs is —1.5 to 1.2) [41]; the logarithm of pre-
dicted blood/brain barrier partition coefficient, log B/B
(range for 95% of drugs is —3.0 to 1.0) [42-44]; the pre-
dicted apparent Caco-2 cell membrane permeability
(BIPcac0-0) in Boehringer-Ingelheim scale, in nm/s (range
for 95% of drugs is <5 low, >100 high) [45-47]; the pre-
dicted apparent Madin-Darby canine kidney (MDCK) cell
permeability in nm s (<25 poor, >500 great) [46]; the
index of cohesion interaction in solids, Ind.,,, calcu-
lated from the number of hydrogen bond acceptors
(HBA), hydrogen bond donors (HBD) and the surface
area accessible to the solvent (S.) by the relation
Indcon = HBA x vVHBD/S0 (0.0 to 0.05 for 95% of
drugs) [40]; the globularity descriptor, Glob = (471 /S oy
where r is the radius of the sphere whose volume is equal
to the molecular volume (0.75 to 0.95 for 95% of drugs);
the predicted polarizability, QP (13.0 to 70.0 for 95%
of drugs); the predicted ICs, value for blockage of HERG
K" channels, logHERG (concern <-5) [48,49]; the pre-
dicted skin permeability, logK, (-8.0 to 1.0 for 95% of
drugs) [50,51]; and the number of likely metabolic reac-
tions, #metab (range for 95% of drugs is 0 to 15).

Results and discussion

Overall DMPK compliance of the CamMedNP library

The 24 most relevant molecular descriptors calculated by
QikProp are used to determine the #star parameter [52].
A plot of the #stars parameter (on the x-axis) against the
corresponding counts (on the y-axis) in the CamMedNP
is shown within the same set of axes with those of the
‘drug-like; ‘lead-like’ and ‘fragment-like’ standard subsets,
Figure 1. The criteria for the respective standard subsets
were defined as MW < 500, log P < 5, HBD < 5, HBA <
10 [14]; 150 < MW < 350, log P < 4, HBD < 3, HBA < 6
[53-55] and MW < 250, -2 < log P < 3, HBD < 3, HBA <
6, NRB < 3 [56]. QikProp was unable to compute the
ADMET descriptors for 25 compounds out of the total li-
brary due to limitations that were not clear to us. Of the
remaining 1,834 compounds, 48.04% showed #star = 0,
while 74.21% had #star < 2. Among the 1,122 compounds
of the drug-like subset, 79.12% had pharmacokinetic de-
scriptors within the acceptable range for 95% of known
drugs, while 97.33% showed #stars < 2. The lead-like and
fragment-like subsets were, respectively, 81.15% and
55.56% compliant for all of the 24 most relevant com-
puted descriptors. The mean values for 19 selected com-
puted descriptors have been shown in Table 1 for all four
compound libraries, while the percentage compliances for
14 selected ADMET-related descriptors are shown in
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Figure 1 Distribution curves for #stars within the CamMedNP
library and subsets. Blue = CamMedNP library, red = drug-like
subset, green = lead-like subset and violet = fragment-like subset.

Table 2. The mean values and percentage compliances in-
dicate a high probability of finding drug leads within the
CamMedNP compound library.

Bioavailability prediction

The bioavailability of a compound depends on the pro-
cesses of absorption and liver first-pass metabolism [57].
The absorption, in turn, depends on the solubility and
permeability of the compound, as well as on the interac-
tions with transporters and metabolizing enzymes in the
gut wall. The computed parameters used to assess oral ab-
sorption are the predicted aqueous solubility, logS,,., the
conformation-independent predicted aqueous solubility,
CI logSyat the predicted qualitative human oral absorp-
tion, the predicted % human oral absorption and com-
pliance to Jorgensen's famous ‘Rule of Three’ (ro3). The
solubility calculation procedure implemented depends on
the similarity property space between the given molecule
and its most similar analogue within the experimental
training set used to develop the model implemented in
QikProp, i.e. if the similarity is <0.9, then the QikProp pre-
dicted value is taken; otherwise, the predicted property,

Ppreq, is adjusted such that

Ppred - SPexp + (1 _S)PQP (1)

where § is the similarity and P, and Pqp are, respectively,
the experimental and QikProp predictions for the most
similar molecule within the training set. In Equation 1, if
S =1, then the predicted property is equal to the mea-
sured experimental property of the training set com-
pound. According to Jorgensen's ro3, if a compound
complies to all or some of the rules (logSy. > 5.7,
BIPcaco2 > 22 nm/s and number of primary metabolites <
seven), then it is more likely to be orally available. The dis-
tribution curves for two of the three determinants for the
ro3 (logSyac and BIPc,..2) are shown in Figure 2A,B. In
general, 47.22% of the CamMedNP library was compliant
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Table 1 Average pharmacokinetic property distributions of total CamMedNP library in comparison with various

subsets

Library name Subset

CamMedNP Drug-like Lead-like Fragment-like
Lib. size® 1,859 1,122 520 81
No. compl.” 881 807 422 45
MW (Da)" 42670 33033 27646 195.75
Log P 418 282 224 142
HBA® 585 518 439 353
HBD' 239 140 129 081
NRB? 531 451 339 206
Log B/8" -1.30 -0.77 —0.64 -036
BlIPcacos (N 57 1,199.37 121627 1,207.91 1,577.16
Semol (A% 69628 569.69 50144 39320
Smolnfob (A%)* 40924 280.66 20091 13161
Vot (A7) 1,304.41 1,024.64 870,65 645.16
LOgSwar (S in mol L™ -5.11 -3.87 -3.13 -1.77
Logkfisa 046 0.15 -0.05 —044
MDCK® 661.25 671.02 663.83 907.31
Ind®,, 0013 0.009 0.009 0.006
Glob? 0.84 0.86 0.88 092
QPporz (A%) 4247 33.56 2823 19.86
LogHERG® —464 441 422 ~340
Logk}, —-2.96 -2.86 -2.89 -263
#metab" 556 462 357 207

3size or number of compounds in library; ®number of compounds with #star = 0; “molar weight (range for 95% of drugs is 130 to 725 Da); %logarithm of
partitioning coefficient between n-octanol and water phases (range for 95% of drugs is —2 to 6); “number of hydrogen bonds accepted by the molecule (range for
95% of drugs is 2 to 20); ‘number of hydrogen bonds donated by the molecule (range for 95% of drugs is 0 to 6); Snumber of rotatable bonds (range for 95% of drugs
is 0 to 15); "logarithm of predicted blood/brain barrier partition coefficient (range for 95% of drugs is —3.0 to 1.0); ‘predicted apparent Caco-2 cell membrane
permeability in Boehringer-Ingelheim scale, in nm/s (range for 95% of drugs is <5 low, >100 high); *total solvent-accessible molecular surface, in A2 (probe radius 1.4 A;
range for 95% of drugs is 300 to 1,000 A%); “hydrophobic portion of the solvent-accessible molecular surface, in A% (probe radius 1.4 A; range for 95% of drugs is 0 to
750 A?); 'total volume of molecule enclosed by solvent-accessible molecular surface, in A* (probe radius 1.4 A; range for 95% of drugs is 500 to 2,000 A%); ™logarithm of
aqueous solubility in g/dm? (range for 95% of drugs is —6.0 to 0.5); "logarithm of predicted binding constant to human serum albumin (range for 95% of drugs is —1.5
to 1.2); °predicted apparent MDCK cell permeability in nm/sec (<25 poor, >500 great); Pindex of cohesion interaction in solids (0.0 to 0.05 for 95% of drugs); “globularity
descriptor (0.75 to 0.95 for 95% of drugs); "predicted polarizability (13.0 to 70.0 for 95% of drugs); *predicted ICs, value for blockage of HERG K* channels (concern <-5);
‘predicted skin permeability (-8.0 to —1.0 for 95% of drugs); “number of likely metabolic reactions (range for 95% of drugs is 0 to 15).

to the ro3, while the respective percentage compliances
for the various subsets were 72.28%, 92.11% and 100% for
the drug-like, lead-like and fragment-like libraries. Among
the individual computed parameters, the most remarkable
was logSy., which was met by 75.74% of the compounds
within the CamMedNP library, while this property shows
a Gaussian distribution for the drug-like and lead-like
subsets. Only 37.94% of the compounds fell within the
respected range for the BIPc,.,» criterion. The predicted
apparent Caco-2 cell permeability, BIPcyco» (in nm s7),
models the permeability of the gut-blood barrier (for non-
active transport), even though this parameter is not often
correctly predicted computationally [58]. The histograms
of the predicted qualitative human oral absorption param-
eter (in the scale 1 = low, 2 = medium and 3 = high) are
shown in Figure 3. It was observed that 52.45% of the

compounds in CamMedNP were predicted to have high
human oral absorption. The predicted % human oral ab-
sorption (on 0 to 100% scale) shows a similar trend, with
41.06% of the compounds being predicted to be absorbed
at 100%, and 57.96% of the compounds predicted to be
absorbed at >90%.

The size of a molecule, as well as its capacity to make
hydrogen bonds, its overall lipophilicity, its shape and
flexibility are important properties to consider when de-
termining permeability. Molecular flexibility has been seen
as a parameter which is dependent on the number of ro-
tatable bonds (NRB), a property which influences the bio-
availability in rats [58]. The distribution of the NRB for
this dataset has been previously discussed [29] and re-
vealed that the compounds within the CamMedNP library
show some degree of conformational flexibility, the peak
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Table 2 Percentage compliances of selected ADMET-related descriptors of total CamMedNP library in comparison with

various subsets

Library name Subset

Total library Drug-like Lead-like Fragment-like
Log B/8 8822 9955 100.00 100.00
BIPcacon (N ™) 4395 4180 39.04 2593
Senol (A% 89.69 99.55 100.00 95.06
Smolpion (A% 90.89 100.00 100.00 100.00
Vinol (A%) 90.95 99.47 99.81 95.06
LogS,at (S in mol L") 69.08 89.57 100.00 97.53
LogKpisa 85.77 99.82 100.00 100.00
MDCK 49.94 5802 56.73 4938
Indon 9520 9875 9962 100.00
Glob 87.90 96.97 96.73 83.95
ro3? 47.22 72.28 91.92 100.00
LogHERG 55.02 61.94 73.27 100.00
LogK, 9144 95.99 9750 97.53
#metab 7961 89.30 9731 93.83

The descriptors of the entries in the first column are defined in Table 1; ®percentage compliance to Jorgensen's Rule of Three.

value for the NRB being between 1 and 2, while the aver-
age value is 5.31 (Table 1).

Prediction of blood-brain barrier penetration

Too polar drugs do not cross the BBB. The blood/brain
partition coefficients (log B/B) were computed and used as
a predictor for access to the central nervous system (CNS).
The predicted CNS activity was computed on a -2 (in-
active) to +2 (active) scale and showed that only 1.85% of
the compounds in the CamMedNP could be active in the
CNS (predicted CNS activity >1). A distribution of the log
B/B (Figure 4) shows a right-slanted Gaussian-shaped curve
with a peak at —-0.5 log B/B units (the same for all the
standard subsets), with >88% of the compounds in the

CamMedNP falling within the recommended range for the
predicted brain/blood partition coefficient (-3.0 to 1.2). The
MDCK monolayers are widely used to make oral absorp-
tion estimates, the reason being that these cells also express
transporter proteins, but only express very low levels of me-
tabolizing enzymes [58]. They are also used as an additional
criterion to predict BBB penetration. Thus, our calculated
apparent MDCK cell permeability could be considered to
be a good mimic for the BBB (for non-active transport). It
was estimated that only about 50% of the compounds had
apparent MDCK cell permeabilities falling within the
recommended range of 25 to 500 nm s~ for 95% of known
drugs. This situation was not greatly improved in the drug-
like and lead-like subsets (58% and 57%, respectively).
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Figure 2 Distribution curves for compliance to Jorgensen's ‘Rule of Three’. (A) calculated logS,,.; against count. (B) Predicted BlPcaco »
against count. Blue = CamMedNP library, red = drug-like subset, green = lead-like subset and violet = fragment-like subset.
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Prediction of dermal penetration

This factor is important for drugs administered through
the skin. The distribution of computed skin permeability
parameter, logK,, showed smooth Gaussian-shaped graphs
centred at -2.5 logK,, units for all the four datasets
(Figure 5), with approximately 91% of the compounds in
the CamMedNP database falling within the recommended
range for >95% of known drugs. The predicted maximum
transdermal transport rates, i, (in pt cm 2 h™Y), were com-
puted from the aqueous solubility (S,.), the MW and skin
permeability (K},) using the relation (2):

Jm = Kp x MW X Sy (2)

This parameter showed variations from 0 to 1,603 p
cm > h™', with only about 1.39% of the compounds in
CamMedNP having the predicted value of J,, > 100 p

21 -1
cm “h.

Count
[~
™~
" -

-12 -10 -8 -6 -4 2 2

100
100

predicted logB/B

Figure 4 Plot of the physico-chemical descriptor used to
predict BBB penetration. Predicted log B/B against count. The x-axis
label is the lower limit of the binned data, e.g. 0 is equivalent to 0.0 to
1.0. Blue = CamMedNP library, red = drug-like subset, green = lead-like
subset and violet = fragment-like subset.

Prediction of plasma-protein binding

The efficiency of a drug may be affected by the degree to
which it binds to the proteins within the blood plasma. It is
noteworthy that the binding of drugs to the plasma pro-
teins (like human serum albumin, lipoprotein, glycopro-
tein, a, p and y globulins) greatly reduces the quantity of
the drug in the general blood circulation, and hence, the
less bound a drug is, the more efficiently it can traverse cell
membranes or diffuse. The predicted plasma-protein bind-
ing has been estimated by the prediction of binding to
human serum albumin; the logKysa parameter recom-
mended range is —1.5 to 1.5 for 95% of known drugs.
Figure 6 shows the variation of this calculated parameter
within the CamMedNP dataset, as well as for the standard
subsets. This equally gave smooth Gaussian-shaped curves
centred on -0.5 logKysa units for all the four datasets. In
addition, our calculations revealed that >85% of the com-
pounds within the CamMedNP library are compliant to
this parameter, indicating that a majority of the compounds
are likely to circulate freely within the blood stream and,
hence, have access to the target site.

Metabolism prediction

An estimated number of possible metabolic reactions has
also been predicted by QikProp and used to determine
whether the molecules can easily gain access to the target
site after entering the blood stream. The average estimated
number of possible metabolic reactions for the CamMedNP
library was between five and six, while those of the standard
subsets drop sequentially by one step in a progressive man-
ner (Table 1). Even though some of the compounds are
likely to undergo as many as up to 26 metabolic reactions
due to the complexity of some of the plant secondary me-
tabolites within the database (Figure 7), about 80% of the
compounds are predicted to undergo the recommended
number of metabolic steps (one to eight reactions), with
the situation improving to around 90% and approximately
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binding. Blue = CamMedNP library, red = drug-like subset, green =
lead-like subset and violet = fragment-like subset.
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97% in the drug-like and lead-like subsets, respectively.
From Figure 7, it can be observed that, except for the
fragment-like subsets which peaks at two predicted meta-
bolic reactions, the peak values for the number of predicted
metabolic reactions were at three for all of the datasets.

Prediction of blockage of human ether-a-go-go-related
gene potassium channel

Human ether-a-go-go-related gene (HERG) encodes a po-
tassium ion (K") channel that is implicated in the fatal
arrhythmia known as forsade de pointes or the long QT
syndrome [59]. The HERG K" channel, which is best
known for its contribution to the electrical activity of the
heart which coordinates the heart's beating, appears to be
the molecular target responsible for the cardiac toxicity of
a wide range of therapeutic drugs [60]. HERG has also
been associated with modulating the functions of some
cells of the nervous system and with establishing and
maintaining cancer-like features in leukemic cells [61].
Thus, HERG K" channel blockers are potentially toxic, and
the predicted ICsy values often provide reasonable
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Figure 7 Distribution of the predicted number of metabolic
reactions for compounds in the CamMedNP. Blue = CamMedNP
library, red = drug-like subset, green = lead-like subset and violet =
fragment-like subset.
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predictions for cardiac toxicity of drugs in the early stages
of drug discovery [62]. In this work, the estimated or pre-
dicted ICs values for blockage of this channel have been
used to model the process in silico. The recommended
range for the predicted log ICsq values for blockage of the
HERG K" channels (logHERG) is >-5. A distribution curve
for the variation of the predicted logHERG is shown in
Figure 8, which is left-slanted Gaussian-shaped curve with
a peak at —5.5 logHERG units for both the total library and
the drug-like subset, meanwhile the lead-like library rather
peaks at —4.5 units. It was observed that, in general, this
parameter is predicted to fall within the recommended
range for about 55% of the compounds within the
CamMedNP database, approximately 62% for the drug-like
subset and around 73% for the lead-like subset.

Usefulness of the CamMedNP library

The usefulness of the CamMedNP database in lead ge-
neration has been exemplified with the docking and
pharmacophore-based screening for potential inhibitors of
a validated anti-malarial drug target in our laboratory, and
the results will be published in a subsequent paper. It is
important to mention that virtual screening results could
provide insight and direct natural products chemists to
search for theoretically active principles with attractive
ADMET profiles, which have been previously isolated, but
not tested for activity against specified drug targets (if sam-
ples are absent). This ‘resurrection’ process could prove to
be a better procedure for lead search than the random
screening, which is a common practice in our Cameroon-
ian laboratories. CamMedNP is constantly being updated;
meanwhile, a MySQL platform (Cupertino, USA) to facili-
tate the searching of this database and ordering of com-
pound samples is under development within our group and
will also be published subsequently. However, 3D structures
of the compounds, as well as their physico-chemical prop-
erties that were used to evaluate the DMPK profile, can be
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Figure 8 A plot of the predicted logHERG values for the CamMedNP

and standard subsets. Blue = CamMedNP library, red = drug-like
subset, green = lead-like subset and violet = fragment-like subset.
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freely downloaded as additional files accompanying this
publication (see Additional file 1, Additional file 2,
Additional file 3, Additional file 4). In addition, informa-
tion about compound sample availability can be obtained
on request from the authors of this paper or from the
pan-African Natural Products Library (p-ANAPL) project
[63,64].

Conclusion

Modern drug discovery programs usually involve the
search for small molecule leads with attractive phar-
macokinetic profiles. The presence of such within the
CamMedNP library is of major importance and, therefore,
renders the database attractive, in addition to the already-
known properties (drug-like, lead-like fragment-like and
diverse). This is an indication that the 3D structures of nat-
urally occurring compounds within the CamMedNP could
be a good starting point for docking, neural networking
and pharmacophore-based virtual screening campaigns,
thus rendering the CamMedNP as a useful asset for the
drug discovery community. 3D structures of the com-
pounds, as well as their physico-chemical properties that
were used to evaluate the DMPK profile of the
CamMedNP library, can be freely downloaded (for non-
commercial use) as additional files which accompany this
publication (see Additional file 1, Additional file 2,
Additional file 3, Additional file 4). The physical samples
for testing are available at the various research laboratories
in Cameroon in varying quantities. Questions regarding
the availability of the compound samples could be
addressed directly to the authors of this paper. Otherwise,
the samples could be obtainable from the p-ANAPL con-
sortium, which has a mandate to collect samples of NPs
from the entire continent of Africa and make them avail-
able for biological screening. This network is being set up
under the auspices of the Network for Analytical and Bio-
assay Services in Africa [63,64].

Additional files

Additional file 1: Compounds currently included in CamMedNP.
1 3D structures of compounds currently included in CamMedNP with
calculated pharmacokinetic descriptors.

Additional file 2: Drug-like subset. 3D structures of the drug-like
subset with calculated pharmacokinetic descriptors.

Additional file 3: Lead-like subset. 3D structures of the lead-like
subset with calculated pharmacokinetic descriptors.

Additional file 4: Fragment-like subset. 3D structures of the fragment-like
subset with calculated pharmacokinetic descriptors.
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