Gibbs JB: Mechanism-based target identification and drug discovery in cancer research. Science 2000, 287: 1969–1973. 10.1126/science.287.5460.1969
Article
CAS
Google Scholar
Cragg GM, Grothaus PG, Newman DJ: Impact of natural products on developing new anti-cancer agents. Chem Rev 2009, 109: 3012–3043. 10.1021/cr900019j
Article
CAS
Google Scholar
Hansch C, Leo A, Mekapati SB, Kurup A: QSAR and ADME. Bioorg Med Chem 2004, 12: 3391–3400. 10.1016/j.bmc.2003.11.037
Article
CAS
Google Scholar
Cronin MT, Dearden JC: QSAR in toxicology. 2. Prediction of acute mammalian toxicity and interspecies correlations. Quant Struct Act Relat 1995, 14: 117–120. 10.1002/qsar.19950140202
Article
CAS
Google Scholar
Mwense M, Wang XZ, Buontempo FV, Horan N, Young A, Osborn D: QSAR approach for mixture toxicity prediction using independent latent descriptors and fuzzy membership functions. SAR QSAR Environ Res 2006, 17: 53–73. 10.1080/10659360600562202
Article
CAS
Google Scholar
Benigni R, Giuliani A: Putting the predictive toxicology challenge into perspective: reflections on the results. Bioinformatics 2003, 19: 1194–1200. 10.1093/bioinformatics/btg099
Article
CAS
Google Scholar
Zhao M, Li Z, Wu Y, Tang YR, Wang C, Zhang Z, Peng S: Studies on log P, retention time and QSAR of 2-substituted phenylnitronyl nitroxides as free radical scavengers. Eur J Med Chem 2007, 42: 955–965. 10.1016/j.ejmech.2006.12.027
Article
CAS
Google Scholar
Srivastava HK, Chourasia M, Kumar D, Sastry GN: Comparison of computational methods to model dna minor groove binders. J Chem Inf Model 2011, 51: 558–571. 10.1021/ci100474n
Article
CAS
Google Scholar
Reddy AS, Pati SP, Kumar PP, Pradeep HN, Sastry GN: Virtual screening in drug discovery--a computational perspective. Curr Protein Pept Sci 2007, 8: 329–351.
Article
CAS
Google Scholar
Pasha FA, Muddassar M, Cho SJ: Molecular docking and 3D QSAR studies of Chk2 inhibitors. Chem Biol Drug Des 2009, 73: 292–300. 10.1111/j.1747-0285.2009.00773.x
Article
CAS
Google Scholar
Srivastava HK, Pasha FA, Singh PP: Atomic softness-based QSAR study of testosterone. Int J Quant Chem 2005, 103: 237–245. 10.1002/qua.20506
Article
CAS
Google Scholar
Srivani P, Sastry GN: Potential choline kinase inhibitors: a molecular modeling study of bis-quinolinium compounds. J Mol Graph Mod 2009, 27: 676–688. 10.1016/j.jmgm.2008.10.010
Article
CAS
Google Scholar
Schultz TW, Cronin MTD, Walker JD, Aptula AO: Quantitative structure-activity relationships (QSARs) in toxicology: a historical perspective. J Mol Struct 2003, 622: 1–22.
Article
CAS
Google Scholar
Karcher W, Devillers J, (eds): Kluwer Academic Publishers, Dordrecht, Practical Applications of Quantitative Structure-Activity Relationships (QSAR). Environmental Chemistry and Toxicology 1990, 1–12.
Katritzky AR, Petrukhin R, Tatham D, Basak S, Benfenati E: Interpretation of quantitative structure-property and activity relationships. J Chem Inf Comput Sci 2001, 41: 679–685.
Article
CAS
Google Scholar
Ravindra GK, Achaiah G, Sastry GN: Molecular modeling studies of phenoxy-pyrimidinyl imidazoles as p38 kinase inhibitors using QSAR and docking. Eur J Med Chem 2008, 43: 830–838. 10.1016/j.ejmech.2007.06.009
Article
CAS
Google Scholar
Janardhan S, Srivani P, Sastry GN: 2D and 3D quantitative structure-activity relationship studies on a series of bis-pyridinium compounds as choline kinase inhibitors. QSAR Combi Sci 2006, 25: 860–872. 10.1002/qsar.200530199
Article
CAS
Google Scholar
Kumar SH: A comparative QSPR study of alkanes with the help of computational chemistry. Bull Kor Chem Soc 2009, 30: 67–76.
Article
CAS
Google Scholar
de Jonge MR, Koymans LM, Vinkers HM, Daeyaert FF, Heeres J, Lewi PJ, Janssen PA: Structure based activity prediction of HIV-1 reverse transcriptase inhibitors. J Med Chem 2005, 48: 2176–2183. 10.1021/jm049534r
Article
CAS
Google Scholar
Miguet L, Zervosen A, Gerards T, Pasha FA, Luxen A, Disteche-Nguyen M, Thomas A: Discovery of new inhibitors of resistant streptococcus pneumoniae penicillin binding protein (PBP) 2x by structure-based virtual screening. J Med Chem 2010, 52: 5926–5936.
Article
Google Scholar
Liao SY, Chen C, Qian L, Shen Y, Zheng KC: QSAR studies and molecular design of phenanthrene-based tylophorine derivatives with anticancer activity. QSAR Combi Sci 2008, 27: 280–288. 10.1002/qsar.200730028
Article
CAS
Google Scholar
Sivaprakasam P, Xie A, Doerksen RJ: Probing the physicochemical and structural requirements for glycogen synthase kinase-3α inhibition: 2D-QSAR for 3-anilino-4-phenylmaleimides. Bioo Med Chem 2006, 14: 8210–8218. 10.1016/j.bmc.2006.09.021
Article
CAS
Google Scholar
Chen JC, Shen Y, Liao SY, Chen LM, Zheng KC: DFT-based QSAR study and molecular design of AHMA derivatives as potent anticancer agents. Int J Quant Chem 2007, 107: 1468–1478. 10.1002/qua.21285
Article
CAS
Google Scholar
Zhang S, Wei L, Bastow K, Zheng W, Brossi A, Lee KH, Tropsha A: Application of validated QSAR models to database mining: discovery of novel tylophorine derivative as potential anticancer agents. J Comput Aided Mol Des 2007, 21: 97–112. 10.1007/s10822-007-9102-6
Article
CAS
Google Scholar
Parr RG, Szentpály Lv, Liu S: Electrophilicity index. J Am Chem Soc 1999, 121: 1922–1924. 10.1021/ja983494x
Article
CAS
Google Scholar
Chermette H: Chemical reactivity indexes in density functional theory. J Comp Chem 1999, 20: 129–154. 10.1002/(SICI)1096-987X(19990115)20:1<129::AID-JCC13>3.0.CO;2-A
Article
CAS
Google Scholar
Chattaraj PK, Maiti B, Sarkar U: Philicity: a unified treatment of chemical reactivity and selectivity. J Phys Chem A 2003, 107: 4973. 10.1021/jp034707u
Article
CAS
Google Scholar
Chattaraj PK, Roy DR: Local descriptors around a transition state: a link between chemical bonding and reactivity. J Phys Chem A 2005, 109: 3771. 10.1021/jp051118a
Article
CAS
Google Scholar
Karelson M, Lobanov VS, Katritzky AR: Quantum-chemical descriptors in QSAR/QSPR studies. Chem Rev 1996, 96: 1027–1043. 10.1021/cr950202r
Article
CAS
Google Scholar
DeProft F, Geerlings P: Calculation of ionization energies, electron affinities, electronegativities, and hardnesses using density functional methods. J Chem Phys 1997, 106: 3270–3279. 10.1063/1.473796
Article
CAS
Google Scholar
Ooma F: Molecular modeling and computer aided drug design. Examples of their application in medicinal chemistry. Curr Med Chem 2000, 7: 141–158.
Article
Google Scholar
Quaquebeke EV, Mahieu T, Dumont P, Dewelle J, Ribaucour F, Simon G, Sauvage S, Gaussin JF, Tuti JE, Yazidi M, Vynckt FV, Mijatovic T, Lefranc F, Darro F, Kiss R: 2,2,2-Trichloro- N -({2-[2-(dimethylamino)ethyl]-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinolin-5-yl}carbamoyl)acetamide (UNBS3157), a novel nonhematotoxic naphthalimide derivative with potent antitumor activity. J Med Chem 2007, 50: 4122–4134. 10.1021/jm070315q
Article
Google Scholar
Qiu XL, Li G, Wu G, Zhu J, Zhou L, Chen PL, Chamberlin AR, Lee WH: Synthesis and biological evaluation of a series of novel inhibitor of Nek2/Hec1 analogues. J Med Chem 2009, 52: 1757–1767. 10.1021/jm8015969
Article
CAS
Google Scholar
Peterson QP, Hsu DC, Goode DR, Novotny CJ, Totten RK, Hergenrother PJ: Procaspase-3 activation as an anti-cancer strategy: structure-activity relationship of procaspase-activating compound 1 (PAC-1) and its cellular co-localization with caspase-3. J Med Chem 2009, 52: 5721–5731. 10.1021/jm900722z
Article
CAS
Google Scholar
Yang X, Shi Q, Liu Y, Zhao G, Bastow KF, Lin J, Yang S, Yang P, Lee K: Design, synthesis, and mechanistic studies of new 9-substituted phenanthrene-based tylophorine analogues as potent cytotoxic agents. J Med Chem 2009, 52: 5262–5268. 10.1021/jm9009263
Article
CAS
Google Scholar
Shah BL, Kaur B, Gupta P, Kumar A, Sethi VK, Andotra SS, Singh J, Saxena AK, Taneja SC: Structure-activity relationship (SAR) of parthenin analogues with pro-apoptotic activity: development of novel anti-cancer leads. Bioorg Med Chem Lett 2009, 19: 4394–4398. 10.1016/j.bmcl.2009.05.089
Article
CAS
Google Scholar
Lu Y, Wang Z, Li C, Chen J, Dalton JT, Li W, Miller DD: Synthesis, in vitro structure-activity relationship, and in vivo studies of 2-arylthiazolidine-4-carboxylic acid amides as anticancer agents. Bioorg Med Chem 2010, 18: 477–495. 10.1016/j.bmc.2009.12.020
Article
CAS
Google Scholar
Tsoua H, MacEwan G, Birnberg G, Grosu G, Bursavich MG, Bard J, Brooijmansa N, Toral-Barzab L, Hollanderb I, Mansoura TS, Ayral-Kaloustiana S, Yub K: Discovery and optimization of 2-(4-substituted-pyrrolo[2,3-b]pyridin-3-yl)methylene-4-hydroxybenzofuran-3(2H)-ones as potent and selective ATP-competitive inhibitors of the mammalian target of rapamycin (mTOR). Bioorg Med Chem lett 2010, 20: 2321–2325. 10.1016/j.bmcl.2010.01.135
Article
Google Scholar
Lu Y, Li C, Wang Z, Ross CRII, Chen J, Dalton JT, Li W, Miller DD: Discovery of 4-substituted methoxybenzoyl-aryl-thiazole as novel anticancer agents: synthesis, biological evaluation, and structure-activity relationships. J Med Chem 2009, 52: 1701–1711. 10.1021/jm801449a
Article
CAS
Google Scholar
Jourdan F, Leese MP, Dohle W, Hamel E, Ferrandis E, Newman SP, Purohit A, Reed MJ, Potter BVL: Synthesis, antitubulin, and antiproliferative SAR of analogues of 2-methoxyestradiol-3,17-O,O-bis-sulfamate. J Med Chem 2010, 53: 2942–2951. 10.1021/jm9018806
Article
CAS
Google Scholar
Cinelli MA, Morrel AE, Dexheimer TS, Agama K, Agarwal S, Pommier Y, Cushman M: The structure-activity relationships of A-ring-substituted aromathecin topoisomerase I inhibitors strongly support a camptothecin-like binding mode. Bioorg Med Chem 2010, 18: 5535–5552. 10.1016/j.bmc.2010.06.040
Article
CAS
Google Scholar
Frisch MJ, et al.: Gaussian 03, revision E.0.1. Gaussian, Inc., Pittsburgh, PA; 2003.
Google Scholar
Katritzky AR, Lobanov VS, Karelson M: CODESSA 2.0, comprehensive descriptors for structural and statistical analysis. University of Florida; 1994.
Google Scholar
Scigress Explorer version 7.7; Fujitsu: Tokyo, Japan 2008.